1. Metric Space

We begin with some preliminaries. A set is a collection of objects or elements. Examples:

- integers: \(\mathbb{N} = \{ \ldots, -1, 0, 1, \ldots \} \)
- rational numbers: \(\mathbb{Q} = \{ m/n \mid m, n \in \mathbb{N}, n \neq 0 \} \)
- real numbers: \(\mathbb{R} \)
- finite-dimensional real space: \(\mathbb{R}^n \)
- the set \(X = \{ x \in \mathbb{R}^2 \mid x = \alpha z, \alpha \in \mathbb{R} \} \) where \(z \in \mathbb{R}^2 \)
- the set of all infinite sequences \((x_0, x_1, x_2, \ldots)\), where \(x_i \in \mathbb{R} \) for all \(i \).
- the set of all real-valued polynomials defined on interval \([a, b]\), \(X = \{ x: [a, b] \to \mathbb{R} \mid x(t) = \sum_{i=0}^{m} \alpha_i t^i, t \in [a, b], \alpha_i \in \mathbb{R}, i = 1, \ldots, m, m \in \mathbb{N}_+ \} \).

Review set operations: empty set \(\emptyset \), \(A \cup B \), \(A \cap B \), \(A^c \) (complement), \(A \times B \), \(A \subset B \).

Let \(X \) and \(Y \) be two non-empty sets. \(f \) is called a function (mapping) from \(X \) into \(Y \) if for every \(x \in X \) there exists a unique \(y \in Y \) such that \(y = f(x) \), denote \(f: X \to Y \). The set \(X \) is called the domain of \(f \), and the set \(\mathcal{R}(f) = \{ y \in Y \mid \exists x \in X \ni f(x) = y \} \) is called the range of \(f \). The set \(\text{Gr}(f) = \{ (x, y) \in X \times Y \mid x \in X, y \in Y, f(x) = y \} \) is call the graph of \(f \).

Functions are further classified according to the properties of their range.

- **Onto** (surjective): \(\forall y \in Y, \exists \text{ at least one } x \in X, y = f(x) \).
- **One-to-one** (injective): \(\forall y \in Y, \exists \text{ at most one } x \in X, y = f(x) \).
- **One-to-one and onto** (bijective): \(\forall y \in Y, \exists \text{ unique } x \in X, y = f(x) \).

Note: Multivalued functions are not allowed. They are called correspondence.

Examples:

- \(f: \mathbb{R} \to \mathbb{R}_+, f(x) = x^2 \).
- \(f: \mathbb{N} \to \mathbb{N}, f(x) = 2x \).
- \(f: \mathbb{R} \to \mathbb{R}, f(x) = 2x \).
- \(f: \mathbb{Q} \to \mathbb{N} \times \mathbb{N}, f(q) = m/n \).
If f is a one-to-one mapping from X into Y, then f has an inverse, $f^{-1} : \mathcal{R}(f) \to X$. f^{-1} is onto. For all $x \in X$, $f^{-1}(f(x)) = x$.

1.1. Metric space

Definition 1.1. A metric space $\langle X, d \rangle$ is a nonempty set X together with a real-valued function d called a metric, $d : X \times X \to \mathbb{R}$, that satisfies the following properties: $\forall x, y, z \in X$,

(i) Nonnegativity: $d(x, y) \geq 0$, $d(x, y) = 0$ iff $x = y$.

(ii) Symmetry: $d(x, y) = d(y, x)$.

(iii) Triangle inequality: $d(x, y) \leq d(x, z) + d(z, y)$.

Examples of metric space:

[1] The Real line $\langle \mathbb{R}, d \rangle$: for any $x, y \in \mathbb{R}$, $d(x, y) = |x - y|$.

[2] $\langle \mathbb{R}^n, d_1 \rangle$: for any $x, y \in \mathbb{R}^n$,

$$d_1(x, y) = \sum_{i=1}^{n} |x_i - y_i| \quad (1)$$

[3] Euclidean space $\langle \mathbb{R}^n, d_2 \rangle$: for any $x, y \in \mathbb{R}^n$, $x = (x_1, x_2, \ldots, x_n)$, $y = (y_1, y_2, \ldots, y_n)$,

$$d_2(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2 \right)^{1/2}. \quad (2)$$

Note: Cauchy-Schwarz inequality: for any $a_i, b_i \in \mathbb{R}$, $i = 1, 2, \ldots, n$,

$$\left(\sum_{i=1}^{n} a_i b_i \right)^2 \leq \left(\sum_{i=1}^{n} a_i^2 \right) \left(\sum_{i=1}^{n} b_i^2 \right) \quad (3)$$

Use Cauchy-Schwarz inequality to prove the metric satisfies the triangle inequality.

[4] $\langle \mathbb{R}^n, d_\infty \rangle$: for any $x, y \in \mathbb{R}^n$,

$$d_\infty(x, y) = \max \{|x_1 - y_1|, |x_2 - y_2|, \ldots, |x_n - y_n|\} \quad (4)$$

[5] Let X be an arbitrary non-empty set. For any $x, y \in X$,

$$d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases} \quad (5)$$

d is called discrete metric, and can be used to metrize any set.
\[C[a, b], d_\infty \]: \(C[a, b] \) is the set of all real valued continuous functions defined on \([a, b]\). For any \(x, y \in C[a, b] \),

\[
d_\infty(x, y) = \sup_{t \in [a, b]} \{|x(t) - y(t)|\}
\]

(6)

Note: Metric \(d \) is not unique. If \(d \) is a metric on \(X \), for any \(\alpha \in \mathbb{R}_+ \), \(\alpha d \) is a metric for \(X \).

Definition 1.2. Let \(\langle X, d \rangle \) be a metric space. If there exists a \(r \in \mathbb{R}, r > 0 \) such that \(\forall x, y \in X, d(x, y) \leq r \), \(\langle X, d \rangle \) is a bounded metric space. Otherwise, it is unbounded.

In above examples, metric space in [5] is bounded. All the rest are unbounded.

Theorem 1.1. Let \(X \) be a non-empty set, define \(d : X \times X \rightarrow \mathbb{R} \). Then \(d \) is a metric iff \(\forall x, y, z \in X, d(x, y) = 0 \) iff \(x = y \).

(i) \(d(x, y) = 0 \) iff \(x = y \).

(ii) \(d(x, y) \leq d(z, x) + d(z, y) \).

Let \(\langle X, d \rangle \) be a metric space, and let \(Y \) be a non-empty subset of \(X \). If \(d' \) denotes the restriction of \(d \) to \(Y \times Y \), i.e., if \(d'(x, y) = d(x, y), \forall x, y \in Y \), then \(\langle Y, d' \rangle \) is a metric space. That is, every subset of a metric space is a metric space. Call \(d' \) the metric induced by \(d \) on \(Y \). \(\langle Y, d' \rangle \) is a metric subspace of \(\langle X, d \rangle \), is often referred to as \(\langle Y, d \rangle \). If \(Y \neq X \), then it is a proper subspace.

Theorem 1.2. (Cartesian Product) Let \(\langle X, d_x \rangle \) and \(\langle Y, d_y \rangle \) be two metric spaces. Let \(Z = X \times Y \). Given \(1 \leq p < \infty \), define \(\forall z_1, z_2 \in Z, z_1 = (x_1, y_1), z_2 = (x_2, y_2) \),

\[
d_p(z_1, z_2) = \left(d_x(x_1, x_2)^p + d_y(y_1, y_2)^p \right)^{1/p}
\]

(7)

\[
d_\infty(z_1, z_2) = \max\{d_x(x_1, x_2), d_y(y_1, y_2)\}
\]

(8)

Then, \(\{Z, d_p\} \) and \(\{Z, d_\infty\} \) are metric (product) spaces.

1.2. Open and closed sets

Let \(\langle X, d_x \rangle \) be any arbitrary metric space.

Definition 1.3. Let \(x_0 \in X \), and \(r > 0 \). An open ball (sphere, neighborhood), denoted by \(B(x_0, r) \), of radius \(r \) centered at \(x_0 \) is defined as

\[
B(x_0, r) = \{x \in X \mid d(x_0, x) < r\}
\]

(9)

1If \(S \) is a set of real numbers bounded above, then there is a smallest real number \(y \) such that \(x \leq y \) for all \(x \in S \). The number \(y \) is the least upper bound, called supremum of \(S \), denoted by \(\sup_{x \in S} x \). If \(S \) is not bounded above, \(\sup_{x \in S} x = \infty \). Similarly, the greatest lower bound of \(S \) is called infimum, denoted by \(\inf_{x \in S} x \).
For different metric, the open ball is different. Consider in \mathbb{R}^2, the open ball defined by d_1, d_2 and d_∞ defined in (1), (2), and (4).

Definition 1.4. Let Y be a subset of X. A point $x \in X$ is called an **interior point** of Y if $\exists r > 0, \exists B(x, r) \subset Y$. The collection of all interior points of Y is called the **interior** of Y, denoted by Y°. A point $x \in X$ is called an **exterior point** of Y if x is an interior point of the complement of Y.

Definition 1.5. A set Y is **open** in X if $Y = Y^\circ$.

Examples of open set:

[1] In metric space $\langle \mathbb{R}, d_1 \rangle$, any arbitrary open interval (a, b), where $a < b$, is open.

[2] Consider metric space $\langle C[a, b], d_\infty \rangle$. Let $\lambda > 0$ be an arbitrary finite number. The set of continuous function satisfying $|x(t)| < \lambda, \forall t \in [a, b]$ is an open set in $C[a, b]$.

Note that a set may have empty interior. For example, a point or a line in $\langle \mathbb{R}^2, d_2 \rangle$.

Theorem 1.3. Let $\langle X, d \rangle$ be a metric space.

(i) X and \emptyset are open sets.

(ii) If $\{Y_\alpha\}_{\alpha \in A}$ is an arbitrary family of open subsets of X, then $\bigcup_{\alpha \in A} Y_\alpha$ is an open set.

(iii) The intersection of finite number of open sets of X is open.

Note that (iii) does not hold for infinite number of open sets. Counter example: In $\langle \mathbb{R}, d_1 \rangle$, let $S_n = (0, 1 + 1/n) \cap \bigcap_{n=1}^\infty S_n = (0, 1]$ which is not open.

Definition 1.6. Let $\langle X, d \rangle$ be a metric space. The **topology** of X determined by d is defined by the family of all open subsets of X.

Definition 1.7. Let Y be a subset of metric space $\langle X, d \rangle$. A point $x \in X$ is called an **closure point** of Y if $\forall \varepsilon > 0, \exists y \in Y \cap B(x, \varepsilon)$. The set of all closure points of Y is called the **closure** of Y, denoted by \bar{Y}. A closure point x is an **isolated point** if $\exists \varepsilon > 0, \exists B(x, \varepsilon) \cap Y = \{x\}$. A closure point x is a **limit point** (or point of accumulation) of Y if $\forall \varepsilon > 0, B(x, \varepsilon)$ contains infinite number of points of Y.

Theorem 1.4. Let Y be a subset of metric space $\langle X, d \rangle$. If x is a closure point of Y, then x is either a limit point or an isolated point.

A topology τ on a set X is a collection of open subsets of X satisfying: (a) $X, \emptyset \in \tau$, (b) τ is closed under arbitrary unions. (c) τ is closed under finite intersections. The set X together with its topology τ, $\langle X, \tau \rangle$, is called a topological space.
A closure point \(x \) of subset \(Y \) can be (a) an isolated point in \(Y \), (b) a limit point in \(Y \), or (c) a limit point that is not in \(Y \).

Definition 1.8. A set \(Y \) is closed in \(X \) if \(Y = \bar{Y} \).

Theorem 1.5. Let \((X, d) \) be a metric space. A subset \(Y \) of \(X \) is closed iff its complement is open.

Examples of closed set:

1. In metric space \((\mathbb{R}, d_1) \), any arbitrary closed interval \([a, b]\), where \(a < b \), is closed.
2. \(X = (-2, -1) \cup (1, 2) \) with the usual metric \(d_1 \). \(Y = (-2, -1) \) and \(Z = (1, 2) \) are both open subsets of \(X \). \(Y^c = Z \) and \(Z^c = Y \), so \(Y \) and \(Z \) are closed subsets of \(X \).

Theorem 1.6. Let \((X, d) \) be a metric space.

(i) \(X \) and \(\emptyset \) are closed sets.

(ii) If \(\{Y_\alpha\}_{\alpha \in A} \) is an arbitrary family of closed subsets of \(X \), then \(\cap_{\alpha \in A} Y_\alpha \) is a closed set.

(iii) The union of finite number of closed sets of \(X \) is closed.

Again, (iii) does not hold for infinite number of closed sets. Counter example: In \((\mathbb{R}, d_1) \), let \(S_n = [1/n, 1] \cup \bigcup_{n=1}^{\infty} S_n = (0, 1] \) which is not closed.

Definition 1.9. Let \((X, d) \) be a metric space. A subset \(D \) is dense in \(X \) if every point of \(X \) is a closure point of \(D \). That is, \(\bar{D} = X \). A subset \(E \) is nowhere dense in \(X \) if \(\bar{E} \) contains no open set. The metric space \((X, d) \) is separable if \(X \) contains a countable dense set.

Examples:

1. \(\mathbb{Q} \) is dense in \((\mathbb{R}, d_1) \), \(\mathbb{Q} \) is countable, so \((\mathbb{R}, d_1) \) is separable.
2. The set of polynomials with rational coefficients defined on \([a, b]\) is countable, and dense in \((C[a, b], d_\infty) \), so \((C[a, b], d_\infty) \) is separable.
3. \(\mathbb{N} \) is nowhere dense in \((\mathbb{R}, d_1) \).
4. A line is nowhere dense in \((\mathbb{R}^2, d_2) \).